Machine Learning: The Art and Science of Algorithms that Make Sense of Data (Flach): http://www.amazon.com/Machine-Learning-Science-Algorithms-Se...
Machine Learning: A Probabilistic Perspective (Murphy): http://www.amazon.com/Machine-Learning-Probabilistic-Perspec...
Pattern Recognition and Machine Learning (Bishop): http://www.amazon.com/Pattern-Recognition-Learning-Informati...
There are some great resources/books for Bayesian statistics and graphical models. I've listed them in (approximate) order of increasing difficulty/mathematical complexity:
Think Bayes (Downey): http://www.amazon.com/Think-Bayes-Allen-B-Downey/dp/14493707...
Bayesian Methods for Hackers (Davidson-Pilon et al): https://github.com/CamDavidsonPilon/Probabilistic-Programmin...
Doing Bayesian Data Analysis (Kruschke), aka "the puppy book": http://www.amazon.com/Doing-Bayesian-Data-Analysis-Second/dp...
Bayesian Data Analysis (Gellman): http://www.amazon.com/Bayesian-Analysis-Chapman-Statistical-...
Bayesian Reasoning and Machine Learning (Barber): http://www.amazon.com/Bayesian-Reasoning-Machine-Learning-Ba...
Probabilistic Graphical Models (Koller et al): https://www.coursera.org/course/pgm http://www.amazon.com/Probabilistic-Graphical-Models-Princip...
If you want a more mathematical/statistical take on Machine Learning, then the two books by Hastie/Tibshirani et al are definitely worth a read (plus, they're free to download from the authors' websites!):
Introduction to Statistical Learning: http://www-bcf.usc.edu/~gareth/ISL/
The Elements of Statistical Learning: http://statweb.stanford.edu/~tibs/ElemStatLearn/
Obviously there is the whole field of "deep learning" as well! A good place to start is with: http://deeplearning.net/
https://www.amazon.com/Bayesian-Analysis-Chapman-Statistical...